Lecture 13 - Debugging ML Models and Error Analysis | Stanford CS229: Machine Learning (Autumn 2018)

Similar Tracks
Lecture 14 - Expectation-Maximization Algorithms | Stanford CS229: Machine Learning (Autumn 2018)
Stanford Online
Logistic Regression in Machine Learning: The Easiest Explanation Ever! | ML Tutorial | Intellipaat
Intellipaat
Stanford CS229: Machine Learning - Linear Regression and Gradient Descent | Lecture 2 (Autumn 2018)
Stanford Online
Lecture 5 - GDA & Naive Bayes | Stanford CS229: Machine Learning Andrew Ng (Autumn 2018)
Stanford Online
Lecture 8 - Data Splits, Models & Cross-Validation | Stanford CS229: Machine Learning (Autumn 2018)
Stanford Online
Lecture 11 - Introduction to Neural Networks | Stanford CS229: Machine Learning (Autumn 2018)
Stanford Online