Similar Tracks
Lecture 9 - Understanding SHAP | Explainable AI (XAI) | Shapley values | Interpreting black box ML
Vizuara
Open the Black Box: an Introduction to Model Interpretability with LIME and SHAP - Kevin Lemagnen
PyData
Kaggle 30 Days of ML (Day 19) - Understanding SHAP Summary Plot - Interpretable Machine Learning
1littlecoder
ML Interpretability: feature visualization, adversarial example, interp. for language models
Umar Jamil
Stanford Seminar - ML Explainability Part 1 I Overview and Motivation for Explainability
Stanford Online
Interpretable Machine Learning Using LIME Framework - Kasia Kulma (PhD), Data Scientist, Aviva
H2O.ai